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Influence of the alkyl substitution position on 
photovoltaic properties of 2D-BDT-based 
conjugated polymers
Huifeng Yao, Long Ye, Benhu Fan, Lijun Huo* and Jianhui Hou*

Three conjugated polymers based on thienyl-substituted ben-
zodithiophene (BDT) and 4,7-bis-thienyl-benzothiadiazole 
(DTBT) with varied substitution positions of the alkyl side 
chains were synthesized to investigate the correlations between 
the structure and photovoltaic performance of the polymer pho-
tovoltaic materials. The three polymers named PBDTDTBT-p, 
PBDTDTBT-o and PBDTDTBT-m were characterized by a set 
of methods including absorption spectroscopy, cyclic voltam-
metry, thermogravimetric analysis, X-ray diffraction, density 
functional theory and photovoltaic measurements. The results 
show that the steric hindrance caused by the different substi-
tution positions of the alky chains has a significant influence 
on the photovoltaic properties of the polymers. The open-cir-
cuit voltage (Voc) of the photovoltaic devices based on the three 
polymers could range from 0.67 to 0.90 V. Clearly, this finding 
provides us a feasible strategy to optimize the photovoltaic 
properties by simply changing the positions of the alkyl chains.

INTRODUCTION
Design, synthesis and applications of novel conjugated 
polymers for polymer solar cells (PSCs) have received sub-
stantial attention over the past decades [1–14]. Significant 
improvements have been achieved in understanding the 
correlations between polymer structure and photovoltaic 
performance, which have helped to boost the power con-
version efficiency (PCE) over 7% in several well-known 
backbones, such as benzodithiophene (BDT) and thieno-
thiophene (TT) (PBDT-TT) [15–28], BDT and benzothia-
diazole (BT) (PBDT-BT) [29,30], BDT and thienopyrrole-
dione (TPD) (PBDT-TPD) [31], etc.

Besides the extensive studies on design of new back-
bone structures, side chain engineering is emerging as an 
important strategy to optimize the structure of photovol-
taic polymers [32–34]. Generally, researchers focus on the 
length (namely, carbon atom number) and type (straight or 
branched) of alkyl chains, which all affect the performance 
of the photovoltaic polymers. Based on the previous stud-
ies, several requirements should be considered for high 
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performance polymers. First, alkyl side chain should afford 
the solubility of the rigid conjugated polymers toward good 
film-forming property. Second, alky side chain could also 
tune the optical absorption, molecular energy levels and 
morphologies of the photovoltaic materials. For instance, a 
dramatic improvement was obtained in PBDT-TPD based 
PSCs through a simple tuning of the side chain length, and 
a high PCE up to 8.5% was achieved by Cabanetos and co-
workers [31]. However, compared with aforementioned 
cases, only a very few of studies took considerations of the 
substitution position effect of alky chains in studies of pho-
tovoltaic polymers [35–37]. Therefore, to investigate the 
effect of substitution positions of the alkyl chains should be 
of great importance for structure optimization of photovol-
taic polymers, and this will provide guidance for designing 
high performance photovoltaic materials.

Previously, we developed an efficient copolymer based 
on thienyl-substituted BDT and 4,7-di (thiophen-2-yl)
benzothiadiazole (DTBT) units, which exhibited a high 
open-circuit voltage (Voc) of ~0.9 V and a PCE over 5% 
[38]. In the present work, in order to get more insights into 
the impact of alky chain substitution positions on photo-
voltaic properties of the PBDTDTBT polymers [38,39], a 
long branched para-hexyldecyl, two ortho-dioctyl and two 
meta-dioctyl side chains were introduced onto the thio-
phene group in varied positions, respectively. Then three 
copolymers named PBDTDTBT-o, PBDTDTBT-m and 
PBDTDTBT-p were synthesized (see Scheme 1), and the 
systematical study revealed the effects of the alkyl chain 
positions on absorption spectra, molecular energy levels, 
crystallinities, morphological and photovoltaic properties 
of the PBDTDTBT polymers.

RESULTS AND DISCUSSION

Synthesis of the polymers
The synthetic routes of the three copolymers are described 
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in Scheme 2. The thiophene derivatives with different alkyl 
chains were synthesized and introduced onto BDT units by 
the same method as reported in our previous work [38], 
after which the monomers were obtained from the reac-
tion with trimethyltin chloride. The three polymers were 
prepared through Stille coupling reaction. More synthetic 
details are given in the Experiment Section. The number 
average molecular weights (Mn) of PBDTDTBT-p, PB-
DTDTBT-o, PBDTDTBT-m are 28 k Da (polydispersities 
(PDI) = 1.9), 25 k Da (PDI = 1.7) and 18 k Da (PDI = 1.8), 
respectively. The thermal stability of the three polymers 
were studied by thermogravimetric analysis (TGA), and 
the TGA plots of these polymers are shown in Fig. 1. It can 
be seen that the decomposition temperatures (Td) at 5% 

S R1 S Br

R2

S R2

R2

S S R1S R2 Br S R2

Br

S R2

R2

O

O
S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

R1

R1

R1

R1

Sn Sn

R2 R2

R2 R2

S

S

S

S

R2 R2

R2 R2

Sn Sn

R2

R2

R2

R2

S

S

S

S

R2

R2

R2

R2

Sn Sn

N
S

N

SS BrBr

BDT

BDT-p

BDT-o

BDT-m

M1

M2

M3

DTBT

S

S

S

S

R1

R1

NSN

SS

S

S
NSN

SS

S

S
NSN

SS

S

R2 R2

S

R2 R2

S R2

R2

SR2

R2

n

n

n

PBDTDTBT-p

PBDTDTBT-o

PBDTDTBT-m

1 2 3 4 5

R1=2-hexyldecyl
R2=n-octyl

Scheme 2  Synthetic routes of the three kinds of polymers.
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Scheme 1  Molecular structures of PBDTDTBT based polymers with varied alkyl side chain positions.
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Figure 1  TGA plots of the polymers under the protection of nitrogen 
with a heating rate of 10 °C min−1.
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weight loss are all above 300°C for the three polymers.

Optical properties
The UV-vis absorption spectra of the three polymers in 
chloroform and solid thin films are shown in Fig. 2, and 
the detailed parameters are listed in Table 1. From Fig. 2a, it 
can be observed that three absorption bands of these poly-
mers and the corresponding absorption peaks of the three 
polymers locate at 613, 593 and 579 nm for PBDTDTBT-p, 
PBDTDTBT-o and PBDTDTBT-m respectively. The opti-
cal band gaps calculated according to the absorption edg-
es of the polymer films are listed in Table 1. Interestingly, 
comparing the absorption spectra of the polymers in solu-
tion with that in films from the Fig. 2b, the onset points 
of the absorption of PBDTDTBT-p and PBDTDTBT-o are 
almost overlapped in solution while 14 nm red-shift is ob-
served from PBDTDTBT-o to PBDTDTBT-p in thin films. 
This phenomenon suggests stronger intermolecular π-π 

interaction may be formed in the PBDTDTBT-p film than 
in PBDTDTBT-o film, which indicates that two ortho-po-
sition substituted alky side chains possess stronger steric 
hindrance than one para-position substituted alkyls. 

Electrochemical properties
Electrochemical cyclic voltammetry (CV) was used to 
measure the molecular energy levels of the three polymers. 
As shown in Fig. 3, all the three polymers show reversible 
p-doping processes. The oxidation potential of PBDT-
DTBT-p is 0.29 V. PBDTDTBT-o shows a little higher oxi-
dation potential (0.31 V) than PBDTDTBT-p by 0.02 V. It 
is obvious that the oxidation potential of PBDTDTBT-m is 
(0.51 V) ca. 0.2 V higher than those of the other two poly-
mers. The highest occupied molecular orbital (HOMO) 
levels of these polymers were calculated according to the 
equation: HOMO = −e (ϕox + 4.80) (eV), and the detailed 
data are listed in Table 1.

Computational study
In order to further explore the effect of alkyl chain posi-
tions on the molecular energy levels and molecular con-
formations of the polymers, theoretical calculation was 
performed by using density functional theory (DFT) with 
the B3LYP/6-31G** basis set (Gaussian 09 [40]). With the 
purpose of reducing the cost of calculation, only the alkyl 
substituted BDTs were employed and the long alkyl chains 
were replaced by −CH2CH3 group. The calculated molecu-
lar geometries and the frontier molecular orbitals are col-
lected in Table 2.

The calculated HOMO levels of BDT-p, BDT-o, BDT-m 
change from −5.11, −5.16 to −5.26 eV, and the trend    is 
quite consistent with the results of corresponding polymers 
from CV tests. The electron density distributions of BDT-p, 
BDT-o have little difference,   i.e., the π-electrons can be de-
localized onto both the BDT units and the substituted thio-
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Figure 2  Normalized UV-vis absorption spectra of the three polymers: 
(a) in chloroform solution, and (b) thin films on quartz.

Table 1  Optical and electrochemical properties of the polymers

Polymer λmax (nm)
Solution Film Eg

opt (eV) HOMO (eV) μ hole cm2 V−1 s−1

PBDTDTBT-p 613 607 1.64 −5.09 3.50 × 10−3

PBDTDTBT-o 593 613 1.68 −5.11 8.61 × 10−3

PBDTDTBT-m 579 596 1.75 −5.31 9.26 × 10−4
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Figure 3  Cyclic voltammogram plots of the polymers on glassy carbon 
electrode in 0.1 mol L−1 Bu4NPF6 in acetonitrile solution at a scan rate of 
50 mV s−1.
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phene units. However the π-electron of BDT-m is mainly 
localized on the BDT unit. It should be noted that the di-
hedral angles   (θ) between the thiophene and BDT units 
change a lot when the alkyls are introduced onto different 
positions, i.e., the dihedral angles are 52.7o, 58.2o and 87.8o 
for BDT-p, BDT-o and BDT-m, respectively. These results 
indicate that the steric hindrance is increased gradually 
from BDT-p to BDT-o and then to BDT-m, which is prob-
ably the origin of the variations of the absorption spectra 
and electrochemical results.

X-ray diffraction (XRD) analysis
XRD was used to examine the crystalline structure of the 
polymers in thin film. As shown in Fig. 4, for PBDTDTBT-p 
and PBDTDTBT-o,   diffraction signals in (100) direction at 
4.26° (corresponding to a d-spacing of 20.72 Å) and 4.70° 
(a d-spacing of 18.78 Å) are observed distinctly. The in-
creased distance of laminar spacing from PBDTDTBT-o to 
PBDTDTBT-p may be caused by the longer alkyl chain of 
2-hexyldecyl than octyl. For PBDTDTBT-m film, no clear 
diffraction peak can be observed in this region, which 
means PBDTDTBT-m has less ordered arrangement in this 
direction. The polymers of PBDTDTBT-p, PBDTDTBT-o 
and PBDTDTBT-m exhibit weak   but clear diffraction sig-
nals in the direction of (010) at 25.36 °, 24.57° and 23.31°, 
respectively, corresponding to π-π stacking distances of 
3.52, 3.61 and 3.81 Å. The intensity of (100) reflection peaks 

decreased a lot from PBDTDTBT-p and PBDTDTBT-o 
to PBDTDTBT-m. The larger π-π stacking distance and 
weaker lamellar reflection indicate that PBDTDTBT-p pos-
sesses the most orderly arrangement while PBDTDTBT-m 
has the worst. Moreover, the results are consistent with the 
phenomenon observed in the absorption spectra and the 
theoretical calculation.

Hole mobility
Hole mobilities of the blend films based on the three PBDT-

Table 2  Calculated HOMO and lowest unoccupied molecular orbital (LUMO) electron density distributions of the alkyl substituted BDTs

BDTs Conformation HOMO LUMO
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Figure 4  X-ray diffraction patterns of three polymers films casted from 
chloroform.
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DTBT polymers were measured by using space-charge-lim-
ited current (SCLC) method and the results are listed in Ta-
ble 1. In the SCLC measurement, a device configuration of 
indiumtin oxide (ITO)/poly(3,4-ethylenedioxythiophene): 
poly(styrenesulfonate)(PEDOT:PSS)/polymer:PC71BM/
Au(80 nm) and the optimal processing conditions in PSC 
devices were used. The hole mobilities of PBDTDTBT-p, 
PBDTDTBT-o and PBDTDTBT-m were calculated as 3.50 
× 10−3, 8.61 × 10−3 and 9.26 × 10−4 cm2 V−1 s−1), respectively 
(Fig. 5).

Photovoltaic behaviors
PSCs with a device structure of ITO/PEDOT:PSS/ poly-
mer: PC71BM/Ca (20 nm) /Al (100 nm) were fabricated to 
investigate the photovoltaic properties of the polymers, and 
the donor/acceptor (D/A) weight ratios were optimized by 
using dichlorobenzene (DCB) as the processing solvent. In 
order to acquire the optimal performances of these devices, 
thermal annealing was also carried out. J-V characteristics 
are shown in Fig. 6 and the corresponding results are sum-
marized in Table 3.

The open-circuit voltage (Voc) values of the optimal de-
vices fabricated based on PBDTDTBT-p, PBDTDTBT-o 
and PBDTDTBT-m are   quite different, changing from 0.67, 

0.75 to 0.90 V, which are highly dependent to their different 
HOMO levels. For PSC devices based on PBDTDTBT-p, a 
best PCE of 3.48% with a low Voc of 0.67 V was obtained 
under a D/A ratio of 1:1 after thermal annealing at 110°C 
for 10 minutes. The processing condition of PBDTDTBT-o 
was the same with that of PBDTDTBT-p. A higher Voc of 
0.75 V with a better PCE of 5.76% was achieved in the 
devices based on PBDTDTBT-o. The devices of PBDT-
DTBT-m shows the highest Voc of 0.90 V, and the optimal 
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Figure 6  J-V curves of the devices based on polymers/PC71BM with different donor/acceptor ratios and annealing condition under illumination of AM 
1.5G, 100 mW cm−2: (a) BDTDTBT-p, (b) PBDTDTBT-o, (c) PBDTDTBT-m; (d) the external quantum efficiency (EQE) curves of the PSCs devices 
fabricated by the optimal conditions.
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D/A weight ratio was 1:2. Compared with the other poly-
mers, the Jsc decreased slightly after thermal annealing in 
the PBDTDTBT-m case, so a PCE of 5.16% with the high-
est Voc of 0.90 V was obtained from the condition without 
post-treatment. The active layer thicknesses of the optimal 
PSC devices were around 95–105 nm.

Morphology
The   morphologies of the blend films based on the three 
polymers were studied by atomic force microscopy (AFM). 
Fig. 7 shows the AFM height images of the three blend 
films coated by the optimal conditions. The root mean 
square (RMS) roughness values of PBDTDTBT-p:PC71BM, 
PBDTDTBT-o:PC71BM are 3.48 and 2.21 nm respectively, 
while PBDTDTBT-m has a higher RMS of 5.11 nm. The 
random arrangement of PBDTDTBT-m may result in a rel-
atively higher RMS when the polymer chains stack to each 
other. The discrepancy in morphology should be connect-
ed to the difference in Jsc values of the devices and conse-
quently affects the overall efficiency.

CONCLUSION
In summary, to get a comprehensive insight into the impact 
of alkyl substitution positions on photovoltaic properties 

of the 2D-BDT-based polymers, three polymers named 
PBDTDTBT-p, PBDTDTBT-o, PBDTDTBT-m with the 
identical conjugated backbone were designed and synthe-
sized. Due to the different steric hindrance caused by the 
substitution positions, these polymers exhibit different 
optical and electrical properties, and also the molecular 
packing and surface morphologies of these polymer films 
are also very different. In detail, PBDTDTBT-o and PBDT-
DTBT-p show little difference in optical band gaps and en-
ergy levels for their relative small discrepancy in steric hin-
drance, while PBDTDTBT-m exhibits the largest band gap 
and the deepest HOMO level among these polymers, due 
to the strongest steric hindrance caused by the alkyl side 
groups.  From the analysis of XRD measurements, more 
ordered inter-molecular arrangement can be found in the 
films of PBDTDTBT-p and PBDTDTBT-o than the PBDT-
DTBT-m film. Interestingly, the Voc values of the devices 
based on these three polymers varied from 0.67, 0.75 to 
0.90 V, which should be related to the varied HOMO levels 
of the polymers.  Overall, the results in this work show that 
the fine-tuning of substitution positions of the alkyl side 
groups plays an important role in modulating photovoltaic 
properties in 2D-BDT-based polymers.

EXPERIMENTAL SECTION

Materials and synthesis 
Compound 1, BDT-p and M1 were synthesized through 
our previous method [41]. Pd(PPh3)4 and Ni(dppp)Cl2 

were purchased from Frontiers Scientific Inc. The mono-
mer DTBT and PC71BM were purchased from Solarmer 
Materials Inc. Tetrahydrofuran (THF) was dried over Na/
benzophenone and freshly distilled prior to use. All of the 
other commercial available reagents and compounds were 

a b c

500 nm 500 nm 500 nm

Figure 7 AFM height images (2×2 μm2) of polymer: PC71BM blend 
films fabricated by the optimal conditions: (a) PBDTDTBT-p, (b) 
PBDTDTBT-o, (c) PBDTDTBT-m.

Table 3  Photovoltaic parameters of the PSCs based on the PBDTDTBT/PC71BM

Polymer Weight ratio Voc (V) Jsc (mA cm−2) FF (%) PCE (%) Th ickness (nm)
PBDTDTBT-p 1:1 0.68 9.35 51 3.25 –

1:2 0.65 6.77 45 2.00 –
1:3 0.65 6.08 49 1.92 –
1:1a 0.67 9.63 54 3.48 95

PBDTDTBT-o 1:1 0.76 9.47 52 3.78 –
1:2 0.72 7.71 53 2.94 –
1:3 0.70 3.96 49 1.37 –
1:1a 0.75 11.82 65 5.76 105

PBDTDTBT-m 1:1 0.87 8.07 51 3.61 –
1:2 0.90 10.81 53 5.16 98
1:3 0.85 6.85 57 3.32 –
1:2 a 0.90 9.79 55 4.85 –

a) thermal annealing at 110°C for 10 min
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used as received.

Instruments 
1H NMR spectra were performed on a Bruker arx-400 
spectrometer in CDCl3 at room temperature. Absorption 
spectra were measured on a Hitachi U-3100 UV-vis spec-
trophotometer. Molecular weights and PDI of the polymers 
were estimated by gel permeation chromatography (GPC) 
method using polystyrene as standard and chloroform as 
eluent. The CHI650D Electrochemical Workstation with 
Glassy carbon, Platinum wire, and Ag/Ag+ electrode was 
used to measure the electrochemical potentials of the poly-
mer films, and the measurement was carried out in a 0.1 
M tetrabutylammonium hexafluorophosphate (Bu4NPF6) 
acetonitrile solution. EQE was measured by a Solar Cell 
Spectral Response Measurement System QE-R3011 (Enli 
Technology). The light intensity at each wavelength was 
calibrated with a standard single-crystal Si photovoltaic 
cell.

Fabrication of polymer solar cells 
pSC devices were fabricated with a typical structure of ITO/
PEDOT-PSS/polymer:PC71BM/Ca/Al under the following 
conditions: after spin-coating a 35 nm of PEDOT:PSS onto 
a pre-cleaned ITO glass substrate, the ITO was dried at 
150°C for 15 min. Then the polymer/PC71BM (10 mg mL−1, 
based on the polymer weight concentration) blend solu-
tions in o-dichlorobenzene was spin-coated. Then, meth-
anol treatment (~60 μL methanol was deposited of active 
layers at 4000 rpm for 30 s) was carried out to improve the 
reproducibility and efficiency of all of the PSC devices for 
realizing better interface contacts [42,43]. Finally, the de-
vices were accomplished by evaporating Ca/Al electrodes 
with an area of 4.15 mm2. All the fabrication processes 
except for the spin-coating of the PEDOT:PSS layers were 
carried out inside a nitrogen glovebox. To obtain reliable 
results, the current density-voltage (J-V) characteristics 
were measured under 100 mW cm−2 standard AM 1.5 G 
spectrum by using a Class AAA solar simulator along with 
a NIM calibrated KG3-filtered reference cells according to 
our recent report [44].

Synthesis

2,3-Dioctylthiophene (2)
To a solution of 2-bromo-3-octylthiophene (30 mmol, 8.28 
g) and Ni(dppp)Cl2 (0.36 mmol, 194 mg) in THF (50 mL), 
the Grignard reagent (2 M, 18 mL) was added dropwise at 
0oC under the protection of argon. Then the reaction was 
stirred under reflux overnight. The mixture was quenched 
by diluted HCl slowly, washed by water and extracted by 
ethyl ether twice, then the combined organic layer was 

concentrated by removing the solvent and the coarse prod-
uct was purified by distillation, after which the pure com-
pound 2 (4.1 g, yield 44%) was obtained as colorless liquid. 
1H NMR (CDCl3, 400 MHz), δ (ppm): 6.98(d, 1H), 6.78(d, 
1H), 2.73 (t, 2H), 2.51 (t, 2H), 1.75–1.60 (m, 4H), 1.30 (m, 
20H), 0.88 (t, 6H).

2-Bromo-5-octylthiophene (3) 
In a three neck round flask, N-bromosuccinimide (NBS) 
(17.8 g, 0.1 mol)  was added to a solution of 5-octylthio-
phene (19.6 g, 0.1 mol) in N,N-dimethylformamide (DMF) 
(150 mL) by portions at 0°C and the reaction was slowly 
warmed to room temperature for 2 h. Then the reaction 
was quenched by 100 mL of water and extracted by et  hyl 
ether three times. After the solvent of organic phase was re-
moved, the crude product was purified by distillation and 
compound 3 (24.3 g, yield 88%) was obtained. 1H NMR 
(CDCl3, 400 MHz), δ (ppm): 6.84 (d, 1H), 6.53 (d, 1H), 
2.74 (t, 2H), 1.65 (m, 2H), 1.31 (m, 10H), 0.89 (t, 3H).

3-Bromo-5-octylthiophene (4) 
To a solution of compound 3 (5.52 g, 20 mmol) in THF 
(30 mL), lithium diisopropylamide (2 M, 13 mL) was add-
ed dropwise at −78°C und  er protection of argon, then the 
solution was warmed to room temperature slowly and kept 
for 16 h. After that the reaction was quenched by water 
slowly, and the mixture was extracted by ethyl ether twice. 
The organic phase was concentrated by removing the sol-
vent and the raw product was purified by distillation to get 
pure compound 4 as a colorless liquid (5.30 g, yield 96%). 
1H NMR (CDCl3, 400 MHz), δ (ppm): 7.00 (s, 1H), 6.70 (s, 
1H), 2.78 (t, 2H), 1.66 (m, 2H), 1.31 (m, 10H), 0.90 (t, 3H).

2,4-Dioctylthiophene (5) 
The same method of synthesizing compound 2 was used 
to prepare compound 5 as a colorless liquid (yield 63%). 
1H NMR (CDCl3, 400 MHz), δ (ppm): 6.68 (s, 1H), 6.62 (s, 
1H), 2.77 (t, 2H), 2.55 (t, 2H), 1.70−1.57 (m, 4H), 1.32 (m, 
20H), 0.90 (t, 6H).

4,8-Bis(5-(2-hexyldecyl)thiophen-2-yl)benzo[1,  2-b:4,5-b’]
d  ithiophene (BDT-o) 
To a solution of compound 2 (6.2 g, 20 mmol) in THF (20 
mL), n-butyllithium (2.5 M, 8.8 mL) was added dropwise 
at 0°C under protection of argon, then the mixture was 
warmed to 50°C and stirred for 0.5 h. Subsequently, benzo 
[1,2-b:4,5-b’]dithiophene-4,8-dione (1.1 g, 5 mmol) was 
added and stirred for 1 h. A solution of SnCl2·2H2O (9.0 
g, 40 mmol) in 10% HCL was added when the reactant 
came back to room temperature, then the reactant was 
stirred for another 2 h. The mixture was poured into ice 
water and extracted with diethyl ether three times, and the 
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organic phase was concentrated by removing the solvent. 
The coarse product was purified by silica gel chromatog-
raphy using petroleum ether as eluent to get pure BDT-o 
(1.40 g, yield 35%). 1H NMR (CDCl3, 400 MHz), δ (ppm): 
7.69 (d, 2H), 7.45 (d, 2H), 7.21 (s, 2H), 2.84 (t, 4H), 2.62 
(t, 4H), 1.76−1.61 (m, 8H), 1.45−1.30 (m, 40H), 0.90−0.84 
(m, 12H).

4,8-Bis(2,4-dioctylthiophene-5-yl)benzo[1,2-b;4,5-b’] dithio-
phene (BDT-m) 
Under the protection of argon, n-butyllithium (2.5 M, 8.8 
mL) was added dropwise into a solution of compound 5 
(6.20 g, 20 mmol) in THF (20 mL) at 0°C, then the mixture 
was warmed up to 50°C and stirred for 0.5 h. Subsequently, 
4,8-dehydrobenzo[l,2-b:4,5-b’]dithiophene-4,8- dione (1.1 
g, 5 mmol) was added and the mixture was stirred for 1 h at 
50°C. After cooling down to ambient temperature, a mix-
ture of SnCl2·2H2O (9.0 g, 40 mmol) in 10% HCl was added 
and the mixture was stirred for additional 2 h. Then the 
mixture was poured into ice water, extracted by ethyl ether 
twice and the combined organic phase was concentrated 
to obtain raw compound BDT-m. Further purification 
was carried out by a chromatographic column using pe-
troleum ether as eluent to obtain pure compound BDT-m 
as yellow stick liquid (1.84 g, yield 46%). 1H NMR (CDCl3, 
400 MHz), δ (ppm): 7.39 (d, 2H), 7.24 (m, 2H), 6.78 (s, 
2H), 2.88 (t, 4H), 2.36 (t, 4H), 1.77 (m, 8H), 1.36 (br, 40H), 
0.91−0.79 (m, 12H).

2,6-Bis(trimethyltin)-4,8-bis(2,3-dioctylthiophene-5-yl)ben-
zo[1,2-b;4,5-b′]dithiophene (M2) 
Under the protection of argon, n-butyllithium (2.5 M, 2.0 
mL) was added dropwise into the solution of BDT-o (1.60 
g, 2.0 mmol) in THF (30 mL) at room temperature and 
stirred for 2 h at 50°C. Then trimethyltin chloride (1.0 M, 
6 mL) was added to the solution at room temperature. 2 
h later, the reaction was quenched by water (80 mL) and 
extracted by ethyl ether twice. After removing the solvent, 
the crude compound M2 was purified by recrystallized to 
obtain pure compound M2 as light yellow powder (1.42 g, 
yield 63%). 1H NMR (CDCl3, 400 MHz), δ (ppm): 7.73 (s, 
2H), 7.24 (s, 2H), 2.86 (t, 4H), 2.64 (t, 4H), 1.78–1.63 (m, 
8H), 1.46–1.30 (br, 40H), 0.90 (m, 12H), 0.40 (m, 18H).

2,6-Bis(trimethyltin)-4,8-bis(2,4-dioctylthiophene-5-yl)ben-
zo[1,2-b;4,5-b′]dithiophene (M3) 
n-Butyllithium (2.5 M, 2.08 mL) was added dropwise into 
the solution of BDT-m (1.60 g, 2.0 mmol) in THF (30 mL) 
at room temperature under the protection of argon, and the 
mixture stirred for 2 h at 50°C. Then trimethyltin chloride 
(1.0 M, 6 mL) was added to the solution at room tempera-
ture and stirred for 2 h. Then the reaction was quenched 

by water (80 mL) and extracted by ethyl ether twice. After 
removing the solvent, the crude compound M3 was puri-
fied by recrystallized to obtain pure compound M3 (1.78 g, 
yield 79%). 1H NMR (CDCl3, 400 MHz), δ (ppm): 7.72(s, 
2H), 7.30 (s, 2H), 2.88 (t, 4H), 2.36 (t, 4H), 1.74 (m, 8H), 
1.41−1.31 (br, 40H), 0.91−0.79 (m, 12H), 0.40 (s, 18H).

Polymerization of PBDTDTBT-p, PBDTDTBT-o, PBDT-
DTBT-m 
BDT monomer (0.5 mmol) and DTBT monomer (0.5 
mmol) were put into a 50 mL two-neck flask, and 10 mL 
of toluene was added. The mixture was stirred and purged 
with argon for 5 minutes, and then 20 mg of catalyst 
Pd(PPh3)4 was added. After being purged for 20 minutes, 
the mixture was put into a 110°C oil bath. After 14 h, the 
reaction was quenched by adding 20 mL of methanol. The 
solid was filtered into a Soxhlet funnel and extracted by 
methanol, hexane, and chloroform successively. The chlo-
roform fraction was collected, concentrated and precipitat-
ed from a large amount of methanol. The precipitants were 
filtered and dried under vacuum. The yield and elemental 
analytical data of the polymers are as follows. 

PBDTDTBT-p: Yield 61%. Calculated for C64H78N2S7: 
C, 69.89; H, 7.15; N, 2.55; S, 20.41; Found: C, 69.77; H, 7.14; 
N, 2.49.  Mn = 28 k Da; PDI = 1.9. 

PBDTDTBT-o: Yield 58%. Calculated for C64H78N2S7: 
C, 69.89; H, 7.15; N, 2.55; S, 20.41; Found: C, 69.87; H, 7.11; 
N, 2.52.  Mn = 25 k Da; PDI= 1.7. 

PBDTDTBT-m: Yield 37%. Calculated for C64H78N2S7: 
C, 69.89; H, 7.15; N, 2.55; S, 20.41; Found: C, 69.85; H, 7.14; 
N, 2.55.  Mn = 18 k Da; PDI = 1.8.
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中文摘要    本文将具有不同取代位点的二维共轭支链引入到PBDTDTBT类聚合物的苯并二噻吩单元上, 设计和合成了三种骨架相同
的两维共轭聚合物,即PBDTDTBT-p, PBDTDTBT-o和PBDTDTBT-m, 并在此基础上探究了烷基链取代位点对共轭聚合物的光伏性质
以及器件性能的影响. 通过吸收光谱、循环伏安、热失重分析、X射线衍射、光伏测试以及理论计算等手段对比研究了三种聚合物光
伏材料, 结果表明由不同烷基链取代位点引起的分子空间位阻作用对三种聚合物的光物理性质、微观形貌以及光伏性能有着重要的
影响. 基于三种聚合物制备的光伏器件的开路电压可从0.67 V变化到0.90 V, 其光伏效率也相应地从3.48%提高到5%以上. 调节烷基链
取代位点是一种简单有效制备高性能聚合物光伏材料的优化策略. 
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